Skip to main content



Monday, June 28, 2021 

Maritime data analytics specialist Metis Cyberspace Technology has launched an Electrical Power Profile evaluation application, adding to its growing array of vessel performance analytics tools.

The new Metis Electrical Power Profile Overview functionality responds to growing market interest in the benefits of installing alternative electrical power sources to auxiliary engines as a cost-effective and sustainable way of covering energy needs during port operations.

With additional auxiliary power being useful for tasks as diverse as manoeuvring, acceleration, anchoring, loading and discharge, the Metis Electrical Power Profile application offers a data-based evaluation for feasibility studies covering alternative electrical power sources. Calculations are based on data acquired automatically by vessel sensors, without any human intervention, with even the detection of the ship’s operational status drawing on an advanced algorithm that is part of the Metis AI platform.   

Serafeim Katsikas, CTO Metis said: “A statistical analysis can be generated based on electrical energy consumption distribution during each operational activity. With this kind of analysis, a user could evaluate – for example - whether its operations within the port or ECA zone would be made more cost effective by installing a power pack.”

The Metis Electrical Power Profile app can measure, report and visualise energy and power consumption across any operational status in the user’s preferred format, offering shipowners greater insights into vessel management excellence. It can take account of all data gathered subsequent to the installation of the Metis data analytics solution.

The new functionality represents a further advance for Metis, whose data acquisition and analytics has already been implemented on nearly 270 ships and is measuring 3.2 billion performance data points monthly. It builds on the company’s Fuel Oil Consumption Profile Overview, which harvests data to quantify all factors affecting a vessel’s fuel consumption based on three months performance and machine learning models.

Reader Comments (0)

There are currently no comments on this article. Why not be the first and leave your thoughts below.

Leave Your Comment

Please keep your comment on topic, any inappropriate comments may be removed.

Return to index